Skip to content Skip to sidebar Skip to footer

Researchers at the Ohio State University Introduce Famba-V: A Cross-Layer Token Fusion Technique that Enhances the Training Efficiency of Vision Mamba Models

The efficient training of vision models is still a major challenge in AI because Transformer-based models suffer from computational bottlenecks due to the quadratic complexity of self-attention mechanisms. Also, the ViTs, although extremely promising results on hard vision tasks, require extensive computational and memory resources, making them impossible to use under real-time or resource-constrained conditions.…

Read More

New generative AI tools open the doors of music creation

This work was made possible by core research and engineering efforts from Andrea Agostinelli, Zalán Borsos, George Brower, Antoine Caillon, Cătălina Cangea, Noah Constant, Michael Chang, Chris Deaner, Timo Denk, Chris Donahue, Michael Dooley, Jesse Engel, Christian Frank, Beat Gfeller, Tobenna Peter Igwe, Drew Jaegle, Matej Kastelic, Kazuya Kawakami, Pen Li, Ethan Manilow, Yotam Mann,…

Read More

AI-Driven Market Sentiment Analysis for Strategic Business Investment

Those in business investment may find managing market sentiment analysis to be challenging. Traditional methods often miss the subtle shifts in investor attitudes, making it hard to make informed decisions.  However, AI-driven sentiment analysis allows investors to gain deeper and more comprehensive insights. It is becoming a valuable asset to investment analysts and simplifies…

Read More

This AI Paper Introduces a Unified Perspective on the Relationship between Latent Space and Generative Models

In recent years, there have been drastic changes in the field of image generation, mainly due to the development of latent-based generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs). Reconstructive autoencoders, like VQGAN and VAE, can reduce images into smaller and easier forms called low-dimensional latent space. This allows these…

Read More

Latent Action Pretraining for General Action models (LAPA): An Unsupervised Method for Pretraining Vision-Language-Action (VLA) Models without Ground-Truth Robot Action Labels

Vision-Language-Action Models (VLA) for robotics are trained by combining large language models with vision encoders and then fine-tuning them on various robot datasets; this allows generalization to new instructions, unseen objects, and distribution shifts. However, various real-world robot datasets mostly require human control, which makes scaling difficult. On the other hand, Internet video data offers…

Read More

Key Roles in a Fraud Prediction Project with Machine Learning | by Mahsa Ebrahimian

The project manager’s role is both critical and challenging. They are responsible for the project’s plan and its execution. At the beginning of the project, they help define the plan and set deadlines based on stakeholders’ requests and the technical team’s capacities. Throughout the project, they constantly monitor progress. If the actual state of tasks…

Read More